# Problem Set 6.2

## Solids of Revolution: Method of Disks



1. (1) Find the volume of the solid generated by revolving the region R bounded by y=1-x x-axis, and y-axis about the x-axis.

Sol. 
$$r = 1 - x$$
,  $h = \Delta x$ 

Then, 
$$\Delta V \approx \pi (1-x)^2 \Delta x$$

Thus, 
$$V = \int_0^1 \pi (1-x)^2 dx =$$

(2) Find the volume of the solid generated by revolving the region R about the y-axis.

#### Solids of Revolution: Method of Washers



2. (1) Find the volume of the solid generated by revolving the region R bounded by y=x and  $y=x^2$  about the line y=-1.

Sol. 
$$r_1 = x + 1$$
,  $r_2 = x^2 + 1$ ,  $h = \Delta x$ 

Then,  $\Delta V =$ 

Thus, V =



(2) Find the volume of the solid generated by revolving the region R about the line y = 1.

## Problem Set 6.3

## Solid of Revolution: Method of Shells



3. (1) Find the volume of the solid generated by revolving the region R bounded by  $y = 1 - x^2$  and x-axis about the line x = 2.

Sol. 
$$r = 2 - x$$
,  $h = 1 - x^2$ ,  $\Delta r = \Delta x$ 

Then,  $\Delta V \approx 2\pi (2-x)(1-x^2)\Delta x$ 

Thus, 
$$V = \int_{-1}^{1} 2\pi (2-x)(1-x^2)dx =$$

(2) Find the volume of the solid generated by revolving the region R about the line x=-1

**4.** (1) Sketch the region R bounded by  $y = 2 + x - x^2$ , x-axis, and y-axis in first quadrant.

(2) Find the volume of the solid generated by revolving the region R about the line y=-1 (hint: Method of Washers)

(3) Find the volume of the solid generated by revolving the region R about the line x=3. (hint: Method of Shells)