Problem Set 3.7

1. Find $y' = \frac{dy}{dx} = D_x(y)$ by implicit differentiation.

$$(1) xy + 2x + 3y^2 = 4$$

$$(2) \sin(xy) = y^2$$

2. (1) Find
$$y'$$
 and y'' at $(1,1)$ if $x^2 + xy + y^2 = 3$

(2) Find the equation of the tangent line to the curve $x^2 + xy + y^2 = 3$ at (1,1).

Problem Set 3.10

Derivatives

$D_x(\sin^{-1}x) = \frac{1}{\sqrt{1-x^2}}$	$D_x(\tan^{-1}x) = \frac{1}{1+x^2}$
$D_x(\sinh x) = \cosh x$	$D_x(\cosh x) = \sinh x$

3. Find the derivative of the function.

(1)
$$y = \sin^{-1}(2x+1)$$

(2)
$$y = \ln(\tan^{-1}x)$$

(3)
$$y = \sinh x \cosh 3x$$

Problem Set 3.11

Let y=f(x) and x change from a to $a+\Delta x$ actual change : $\Delta y=f(a+\Delta x)-f(a)$ differential : $dy=f'(a)dx=f'(a)\Delta x$

4. Find $\triangle y$ and dy where $y = 2x - x^2$, x = 2, $\triangle x = dx = -0.3$

At
$$x = a$$
,

linear approximation : L(x) = f(a) + f'(a)(x-a)

5. Find the linear approximation to the function $f(x) = \sin x \text{ at } x = \frac{\pi}{6}.$

Approximation $f(a + \Delta x)$ where $\Delta x = dx$ using;

- a differential : $f(a + \Delta x) \approx f(a) + f'(a)dx$
- a linear approximation : $f(a + \Delta x) \approx L(a + \Delta x)$
- **6.** Approximate $\sqrt{99.8}$.
- (1) Find f(x) and a point a near 99.8 to approximate $\sqrt{99.8}$.

$$f(x) = a = a$$

(2-1) [method1] Use a differential to approximate $\sqrt{99.8}$.

(2-2) [method2] Use a linear approximation to approximate $\sqrt{99.8}$.